传统的脱硫废水处理工艺即“三联箱”技术已经较为成熟,该工艺采用物理化学方法,经过中和、沉降、絮凝和澄清等过程对脱硫废水进行处理。该工艺不能有效去除废水中的高浓度氯离子,处理出水为高含盐废水,具有强腐蚀性,无法回收利用。如若排入自然水系,将会造成环境污染。
脱硫废水排放已经是燃煤电厂面临的严重的环保问题,传统的脱硫废水处理工艺达到的水质排放标准越来越不符合当下国家严格的环保发展形势,电力企业实现脱硫废水零排放的需求越来越迫切,减排和近零排放成为必然趋势。近年来国内脱硫废水处理领域实施的高盐废水蒸发结晶处理技术,多采用高品位能源进行废水的蒸发干燥、盐分的回收利用,以实现脱硫废水零排放。该技术存在严重的腐蚀、结垢问题,对设备材质防腐性能要求高,且能耗高,投资、运行成本高,运行控制难度大。
利用烟道烟气对脱硫废水进行蒸发处理,相比较高盐废水蒸发结晶处理技术的高造价、高能耗和高运行费用相比,可大大降低工程造价、能耗和运行费用,且技术简单,理论上可以实现脱硫废水的零排放。受到了越来越多的关注。
1、处理技术分析
1.1 工艺原理
通过废水与热烟气的有效接触,利用烟道烟气的热量将雾化后的脱硫废水进行蒸发,实现水与盐的分离,完成终的固液分离,从而实现脱硫废水的零排放。蒸气随除尘后的烟气进入脱硫塔,在脱硫塔的喷淋冷却作用下,水分凝结进入脱硫塔的浆液循环系统。废水中的污染物转化为细微结晶颗粒物,随烟气中的飞灰一同通过仓泵回收或在除尘系统中被捕获收集,并随灰一起外排。
1.2 技术路线
在10个经过清洁的烧杯中,分别加入100mL的粘胶短纤维酸性废水,并对其进行的编号(1号~10号)。使用氢氧化钠将烧杯中废水的pH值调制1.2(原水)、2、3、4、5,将其分成两组,其中在1号~5号的烧杯中,依据硫酸根与碳酸钡的摩尔比1∶1,将碳酸钡加入其中;6号~10号的烧杯中,依据硫酸根与氯化钡的摩尔比1∶1,将氯化钡加入其中。经过搅拌后将其沉淀30分钟,过滤,分别检测滤液的硫酸根浓度、pH值。
1.2 氯化钡、碳酸钡量
在经过清洁的8个烧杯中,分别加入100毫升的粘胶短纤维酸性废水,并对其进行的编号(1号~8号),其中1号~4号、5号~8号,分别按照硫酸根、与氯化钡、碳酸钡的摩尔比1.1、1、0.95、0.9,将氯化钡、碳酸钡加入烧杯中,经过搅拌后将其沉淀30分钟,过滤,分别检测滤液的硫酸根的浓度。
1.3 搅拌时间、速度
在经过清洁的16个烧杯中,分别加入100mL的粘胶短纤维酸性废水,对其进行的编号(1号~16号),将其分为4组,依据硫酸根与碳酸钡的摩尔比1∶1,将碳酸钡加入烧杯中。4组烧杯搅拌的速度分别为:635、1240、1700、2050(单位为转/分钟),沉淀的时间为10分钟、20分钟、30分钟、40分钟。完成静置以后,对烧杯中的废水进行过滤,检测滤液中硫酸根的浓度。
1.4 反应温度
在经过清洁的8个烧杯中,分别加入100mL的粘胶短纤维酸性废水,并对其进行编号(1号~8号),其中1号~4号、5号~8号分别按照硫酸根、氯化钡、碳酸钡的摩尔比1∶1,将氯化钡、碳酸钡加入废水中。分别将烧杯加热,保证其温度为20℃、40℃、70℃和80℃,经过30分钟以后,将烧杯中的液体过滤,检测硫酸根的浓度。
2、分析硫酸根处理与资源化的实验结果
2.1 pH值对硫酸根沉淀的影响
经过上述实验可以发现,将碳酸钡加入废水中,除了原液之外其他滤液的pH值为7.3。由于硫酸属于中强酸,加之粘胶短纤维酸性废水中的硫酸根存在缓冲体系,而pH值只能检测到氢离子的数值。当pH值等于1.2时(原水),废水中硫酸根的浓度等于0.2542mol/L,其中氢离子的消耗量较小,原水中的pH值并没有发生较大的变化。当pH值≥3时,氢氧化钠就会破坏废水中硫酸根的缓冲体系,将碳酸钡纳入其中就会产生二氧化碳、碳酸氢根等,故而pH值的变化较大。
由于试验中将废水的pH值调至不同的程度,当pH值越小,使用碳酸钡去除硫酸根的效果就越明显,其化学方程式为:BaCO3+SO42-=BaSO4↓+CO32-,碳酸钡属于固体很难溶于水中,为保障其能够得到充分的反应,就要将碳酸钡溶解,释放其中的钡离子。当废水中氢离子的浓度较大时,就会发生以下两个反应:Ba2++CO32-+2H++SO42-=BaSO4↓+H2O+CO2↑、Ba2++CO32-+H++SO42-=BaSO4↓+HCO3-,进而保障在快的时间内生成硫酸钡,减少废水中硫酸根的含量。当pH值小,氯化钡去除硫酸根的效果则不明显,主要是由于当氢离子的浓度较大时,废水中就会发生BaSO4+H+=Ba2++HSO4-的化学反应,将沉淀的硫酸钡溶解。在酸性条件下,硫酸根与碳酸钡反应生成的硫酸钡较多,对于原水来说,碳酸钡处理硫酸根的效果要优于氯化钡。
2.2 氯化钡、碳酸钡量对硫酸根沉淀的影响
经过对上述实验结果的分析与比较发现:随着氯化钡、碳酸钡量的增加,滤液中硫酸根的实际浓度就会逐渐降低。当投加的比例为1时,对于硫酸根的去除效果并不明显;当投加的比例为1.1时,滤液中的钡离子就会全部消失,也就是说氯化钡对于去除硫酸根的效果较好,主要是因为废水中氢离子的浓度较小,无法溶解更多的碳酸钡,并不会影响氯化钡的反应效果。一般来说,工业在处理粘胶短纤维酸性废水时,为了提高硫酸根的去除效果,避免水中出现多余的钡离子,会将投加氯化钡的比例控制在0.95~1.0,尽可能的接近于1。通过这样的处理方式,不仅能够降低废水中硫酸根的浓度,还不会影响处理效果的升华反应,尽可能回收利用废水中的硫酸根,避免废水发生导电现象。
2.3 搅拌时间、速度对硫酸根沉淀的影响
由于在粘胶短纤维酸性废水加入的碳酸钡属于难溶固体,在酸性条件下需要较长的反应时间,为了使其能够得到充分溶解、反应,应该对其进行搅拌,需要掌握搅拌时间对处理硫酸根效果的影响。在实验中提到,针对不同序号的烧杯采用不同速度、时间的搅拌方式,加之对实验结果的分析,可以发现:搅拌时间、速度对硫酸根沉淀效果的影响有着明显的差异,搅拌的速度越快、时间越长,碳酸钡越能够充分溶解。主要是因为碳酸钡难溶于水,通过搅拌能够加快其溶解的速度,进而加快碳酸钡与粘胶短纤维酸性废水中硫酸根发生反应,实现处理废水的目的。当搅拌时间大于30分钟、搅拌速度高于1240转/分钟时,碳酸钡与硫酸根的反应将会消失,故应该选择搅拌时间小于30分钟,速度在1240转/分钟以下。
2.4 反应温度对硫酸根沉淀的影响
通常情况下,粘胶短纤维酸性废水的温度在70℃~80℃,需要考虑温度对于处理、资源化硫酸根效果的影响。在实验中,将不同烧杯中的废水设定了不同的温度,依据对实验结果的分析可以发现:废水的温度越高,氯化钡、碳酸钡去除废水中硫酸根的效果就越明显。主要是因为,当温度变高时,硫酸钡的溶解程度就会不断降低,能够增强硫酸根的沉淀效果。对于普通企业来说,并不需要将粘胶短纤维酸性废水进行降温处理,便可直接将一定数量的氯化钡、碳酸钡置入废水中,完成对硫酸根的处理。
从上述实验可以发现,氯化钡、碳酸钡能够在原水的温度、pH值下与硫酸根发生反应,并且其处理的效果明显,能够去除97.6%或以上的硫酸根,对废水pH值的影响的较小。将氯化钡投放在废水中,也能够获得较高的处理效果,由于其自身属于剧毒物质,对于储存、使用的要求较高,一旦使用不当,可能导致废水中的钡离子超标,不利于对水的管理。与之相比,碳酸钡的成本降低,且具有较强的安全性,与碳酸根发生反应以后不会产生有害物质。
按脱硫废水的喷射位置不同,利用烟道烟气蒸发脱硫废水可分为直接烟道喷雾蒸发技术和旁路烟道喷雾蒸发技术。后者根据废水雾化方式的不同,又可分为双流体喷雾蒸发塔和旋转喷雾蒸发塔。
1.3 关键设备
脱硫废水的雾化效果是烟气蒸发处理技术的核心,直接关系到废水能否完全蒸发及电厂烟道和除尘器的安全运行。
1.3.1 喷枪
双流体喷枪是直接烟道喷雾蒸发和双流体喷雾蒸发塔核心的部分。双流体喷枪配置气流式雾化喷嘴,利用高速流动的气体和液体之间的相互作用来将脱硫废水雾化。
双流体喷枪喷嘴结构简单,磨损小;对低黏度或高黏度液体均可雾化,适用范围广;操作压力低;雾化粒径细;可控性较好,通过控制气液比可控制雾滴大小的优点。
由于脱硫废水具有较强的腐蚀性,故喷嘴材质必须具备耐腐蚀特性。
1.3.2 旋转雾化器
旋转雾化器是旋转喷雾蒸发塔核心的部分。脱硫废水送至高速旋转的雾化器时,由于离心力的作用,废水伸展为薄膜或被拉成细丝,在雾化器边缘破裂分散为液滴,液滴的大小取决于旋转速度和浆液量。旋转雾化器能够保证在液体流量不发生很大变化时,雾化雾滴的粒径分布不发生显著改变。
由于液滴脱离雾化器的相对速率高,达到160~200m/s,传质系数较大。每升雾化废水可以形成200m2的表面积,雾化效果好。保证了脱硫废水在旋转喷雾蒸发塔中能够快速蒸发干燥。
旋转雾化器除具有高可靠性、易维护、耐磨、雾化均匀等优点外,其喷雾量的调节范围广,对烟气温度、烟气成分、烟气量等变化适应性强,能快速响应机组工况的变化。